Development of a finite element model of the ligamentous cervical vertebral column of a Great Dane

Bonelli et al., Res Vet Sci. 2018 Jan 29;118:97-100.

Cervical spondylomyelopathy (CSM), also known as wobbler syndrome, affects mainly large and giant-breed dogs, causing compression of the cervical spinal cord and/or nerve roots.

Structural and dynamic components seem to play a role in the development of CSM; however, pathogenesis is not yet fully understood. Finite element models have been used for years in human medicine to study the dynamic behavior of structures, but it has been mostly overlooked in veterinary studies.

To our knowledge, no specific ligamentous spine models have been developed to investigate naturally occurring canine myelopathies and possible surgical treatments. The goal of this study was to develop a finite element model (FEM) of the C2-C7 segment of the ligamentous cervical vertebral column of a neurologically normal Great Dane without imaging changes.

The FEM of the intact C2-C7 cervical vertebral column had a total of 188,906 elements (175,715 tetra elements and 12,740 hexa elements). The range of motion (in degrees) for the FEM subjected to a moment of 2Nm was approximately 27.94 in flexion, 25.86 in extension, 24.14 in left lateral bending, 25.27 in right lateral bending, 17.44 in left axial rotation, and 16.72 in right axial rotation.

We constructed a ligamentous FEM of the C2-C7 vertebral column of a Great Dane dog, which can serve as a platform to be modified and adapted for studies related to biomechanics of the cervical vertebral column and to further improve studies on osseous-associated cervical spondylomyelopathy.