Computed Tomography Topographical Analysis of Incomplete Humeral Intracondylar Fissures in English Springer Spaniel Dogs

Dylan J L Payne, Tim H Sparks, Matthew A J Smith, Nicholas J Macdonald
Vet Comp Orthop Traumatol. 2023 Nov 15. doi: 10.1055/s-0043-1776708.

Objective: The aim of this study was to use computed tomography (CT) images obtained from English springer spaniels (ESS) with different sizes of humeral intracondylar fissure (HIF) to describe the typical shape, origin and a possible propagation pattern of HIF in this breed.

Study design: It is a retrospective analysis of 32 elbow CT from 27 ESS with incomplete HIF. Measurements included HIF articular surface length, centre of HIF at articular surface relative to the caudal edge of the supratrochlear foramen (CHIF), HIF depth and sagittal area of fissure. Measurement of isthmus area and diameter was obtained for each elbow. Humeral intracondylar fissure measurements were analysed as proportions of the isthmus. For parts of analysis, elbows were grouped by HIF area as a percentage of isthmus area (%HIF) into less than 20% (n = 10), 20 to less than 40% (n = 8), 40 to less than 60% (n = 9) and 60 to less than 90% (n = 5).

Results: The mean isthmus diameter was 12.31 mm (range: 10.96-13.69 mm). Mean CHIF for %HIF groups less than 20%, 20 to less than 40%, 40 to less than 60% and 60 to less than 90% were 57, 74, 86 and 96 degrees, respectively. The less than 20% group was significantly lower than 20 to less than 40% group (p = 0.035) and 40 to less than 60% and 60 to less than 90% groups (p < 0.001); the 20 to less than 40% group was significantly lower than the 60 to less than 90% group (p = 0.015). Humeral intracondylar fissure articular surface length increased in a sigmoidal fashion relative to %HIF, corresponding to segmental enlargement of the fissure as %HIF increases.

Conclusion: In ESS, HIF typically originates approximately 57 degrees caudal to the supratrochlear foramen in the sagittal plane and may propagate in a segmental fashion with lesser propagation through the proximal intracondylar region.