Radiographic and computed tomographic assessment of the development of the antebrachia and elbow joints in Labrador Retrievers with and without medial coronoid disease

S. F. Lau¹,²; H. A. W. Hazewinkel²; G. Voorhout¹

¹Division of Diagnostic Imaging, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; ²Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; ³Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia

Keywords
Elbow joint, Labrador Retriever, medial coronoid disease, development

Summary
Objectives: To compare the development, monitored by radiography and computed tomography, of the antebrachia and elbow joints in seven Labrador Retrievers with healthy elbow joints and in seven Labrador Retrievers that developed medial coronoid disease (MCD), in order to determine whether disturbances in the development of the antebrachia and elbow joints, between the age of six and 17 weeks may lead to medial coronoid disease.

Methods: A prospective study of 14 Labrador Retrievers in their active growth stage was performed. The development of the antebrachia and elbow joints was assessed between six and 17 weeks of age using radiography and computed tomography determining the development of secondary ossification centres, radioulnar length ratio, radial angulation, and inter-relationship between the humerus, ulna and radius.

Results: For the parameters of ossification of secondary ossification centres, radioulnar length ratio, radial angulation, and joint congruence evaluation, there was no significant difference in the development of the antebrachia and elbow joints of seven Labrador Retrievers positive and seven Labrador Retrievers negative for MCD at the age of six to 17 weeks.

Clinical significance: These findings demonstrate that the development of MCD in the Labrador Retrievers in our study was not related to any disturbance in the development of the antebrachia and elbow joints during the rapid growth phase.

Introduction
Medial coronoid disease, which includes fissuring and fragmentation of the medial coronoid process, and pathological lesions of cartilage and of subchondral bone of the medial coronoid process has been introduced as being a more representative term than fragmented medial coronoid process (1, 2). Despite the high incidence of medial coronoid disease in Labrador Retrievers and other breeds, the aetiopathogenesis of the disease has yet to be elucidated (2–4). Different theories have been postulated regarding the aetiopathogenesis of medial coronoid disease.

Current postulated factors contributing to medial coronoid disease include osteochondrosis, fatigue-induced microdamage of subchondral bone, different distribution of loading or forces within the joint such as tensile forces originating from the annular ligament, and shear stress between the contact area of the proximal radial head and axial border of the medial coronoid process during pronation and supination (5–8). Mechanical overloading of the ulnar surface due to joint incongruity with a shortened radius or under-development of the ulnar trochlear notch has also been suggested to cause or contribute to the disease (9, 10).

The postnatal development of the canine radius, ulna, and humerus has been investigated in small and large breed dogs, but there is a lack of information regarding the postnatal development of the radius, ulna, and humerus in the Labrador Retriever, a
breed with a high incidence of medial coronoid disease (2, 3, 11–20). Any disturbance of endochondral ossification may lead to abnormal skeletal development and maturation (20, 21). Abnormalities in the development and maturation of the elbow joint may occur in the first three to four months of life during the rapid growth phase. Hence, the aim of the present study was to compare the development, monitored by radiography and CT, of the antebrachium and elbow joint in dogs with healthy elbow joints and in dogs that developed medial coronoid disease, in order to determine whether disturbances in the development of the antebrachium and elbow joint between the age six and 17 weeks may contribute to the occurrence of medial coronoid disease.

Materials and methods

Data collection

This study was approved by the Ethics Committee of Utrecht University as required by Dutch legislation (D.E.C. 2009.III.06.050). Fourteen purpose-bred Labrador Retriever puppies (nine males, five females), originating from two litters of a medial coronoid disease positive dam and two medial coronoid disease positive sires, were monitored at two week intervals by radiography and computed tomography (CT) of the antebrachium and elbow joints, from six (n = 7) or seven (n = 7) weeks of age until euthanasia at the age of 15 weeks (2 dogs) or 17 weeks for another micro CT, necropsy and histological study (remaining 12 dogs) (11–12). The dogs were raised on a diet of commercial dog food and housed in groups of two or three dogs.

Radiographs of the elbow joints were made with a direct digital radiography system5 using 50 kVp and 8 mA. Only mediolateral and craniocaudal views of the elbow joints were obtained when the dogs were between six and 11 weeks of age. Craniolateral-caudomedial oblique and extended supinated mediolateral views were included from 12 weeks onward (11). For CT, the dogs were anaesthetized and positioned in dorsal recumbency on the CT scanning table with the elbow joints extended about 135°. The antebrachia were positioned parallel to each other and as symmetrically as possible at the same level using a custom-made positioning device. Transverse views were made with a third-generation single-slice helical CT scanner6 using 120 kVp and 120 mA with an exposure time of 1 second, and a pitch of 1.0. One millimetre thick slices of the elbow joints were made with the joints in neutral position as described previously (11).

The results of radiography, CT, micro CT, necropsy and histological examination of the elbow joints of these dogs have been described previously (11, 12). Of the 14 dogs, seven (four males, three females) were medial coronoid disease-negative and six (five males, one female) were bilaterally medial coronoid disease-positive. One female dog was medial coronoid disease-positive unilaterally.

From the series of radiographs and CT images from six until 17 weeks of age, including two dogs which were euthanatized at the age of 15 weeks, the development of the antebrachium and elbow joints was assessed on the basis of the development of secondary ossification centres, the growth in length of the radius and ulna, radial angulation, and the inter-relationship between the humerus, ulna and radius. All assessments and measurements were performed by a single observer (SFL) who was unaware of the medial coronoid process status of the dogs at the time of the measurements.

Secondary ossification centres

From the lateral radiographs of the antebrachium, the development of the olecranal apophysis, medial humeral epicondyle, and ulnar styloid process was assessed and classified according to the stage of ossification and the shape (irregular ossification, round, rounded edges, proper anatomical shape) (16, 20). Ossification of the anconeal process was assessed on serial CT images, and the stage of ossification was classified according to the shape and delineation (no evidence of ossification, irregular ossification, and proper anatomical shape).

Radioulnar length ratio

The radioulnar length ratio was calculated using measurements from the serial mediolateral radiographic projections. The diaphyseal length of the radius was measured from the mid-point of the proximal radial growth plate to the mid-point of the distal radial growth plate along a straight line. The ulnar diaphyseal length was measured from the most proximal part of the proximal ulnar metaphysis to the most distal part of the distal ulnar metaphysis along a straight line. The radioulnar length ratio was calculated by dividing the length of the radius by the length of the ulna.

Centre of rotation of angulation methodology

For radial alignment quantification, the centre of rotation of angulation (CORA) method was used (22). On the craniocaudal radiographic projection, joint orientation lines were drawn along the proximomedial aspect and the proximomedial aspect of the radial head and, at the carpal joint level, along the distolateral aspect and the distolateral aspect of the distal radius (Figure 1a). The medial proximal radial angle and lateral distal radial angle were determined from the craniocaudal radiograph (Figure 1b) (22). Sagittal radial orientation was assessed on the mediolateral radiographic projection, with joint orientation lines drawn along the proximo-cranial and proximo-caudal aspect of the radial head and, at the carpal joint level, along the disto-cranial and disto-caudal aspect of the radius (Figure 1c). Joint orientation angles in the mediolateral radiographic projection, namely, the proximal cranial radial angle and distal caudal radial angle, were determined as described previously (Figure 1d) (22). The radial procurvatum angle was measured at the point at which the two separate straight mid-diaphyseal lines intersected (Figure 1d).

Joint congruence evaluation

Radioulnar congruity was assessed from CT images as described before and

a Philips Digital Rad TH: Philips, Eindhoven, The Netherlands

b Philips Secura: Philips, Eindhoven, The Netherlands
measured three times on the reconstructed sagittal and dorsal CT images obtained from 12 or 13 weeks until 15 weeks in the two dogs that were euthanatized at that age, and until 16 or 17 weeks of age in the remaining dogs (23). Sagittal plane reconstructions were made at the base of the medial coronoid process at the junction with the trochlear notch (Figure 2a); a circle was drawn along the ulnar trochlear notch (Figure 2b). Radioulnar joints were considered congruent when there was no step between the most proximal epiphyseal borders of the radius and the circle. In reconstructed images in the dorsal plane at both the middle and the apex of the medial coronoid process (Figure 2a), the distance between the most proximal ulnar surface and the most proximomedial aspect of radial head was measured (Figure 2c and d). Humeroulnar joint congruence was assessed on a series of sagittal plane reconstructions and the joint was considered congruent when there was no evidence of mismatch in between the curvature of the trochlear notch and humeral trochlea. Humeroulnar joint congruence was classified as present or absent.

Statistical analysis

Statistical analyses were performed using a statistical software package. The non-parametric Kruskal-Wallis test was used to analyse the data of the secondary ossification centres study because the dependent outcome was an ordinal score; differences were considered statistically significant at p <0.05. Linear mixed models containing both fixed and random effects were used to analyse the radioulnar length ratio, medial proximal radial angle, lateral distal radial angle, proximal cranial radial angle, distal caudal radial angle, radial procurvatum angle, and radioulnar joint congruence evaluation. Model selection was based on the Akaike Information Criterion. Conditions for the use of mixed models, including the normal distribution of the data, were assessed by analysing the residuals (PP and QQ plots) of the acquired models; no violations of these conditions were observed. Data are expressed as mean ± SD (Table 1, SPSS Version 20.0: SPSS Inc., Chicago, IL, USA).
Table 1 Measurements used to investigate the development of the antebrachia and elbow joints at different ages (in weeks).

<table>
<thead>
<tr>
<th>Age in weeks</th>
<th>6–7</th>
<th>8–9</th>
<th>10–11</th>
<th>12–13</th>
<th>14–15</th>
<th>16–17</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU (ratio)</td>
<td>0.778 ± 0.01</td>
<td>0.784 ± 0.01</td>
<td>0.783 ± 0.01</td>
<td>0.784 ± 0.01</td>
<td>0.788 ± 0.01</td>
<td>0.791 ± 0.01</td>
</tr>
<tr>
<td>Centre of rotation of angulation methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPRA (°)</td>
<td>89.3 ± 2.5</td>
<td>89.9 ± 2.2</td>
<td>92.4 ± 2.7</td>
<td>92.9 ± 2.2</td>
<td>92.7 ± 2.0</td>
<td>94.8 ± 2.3</td>
</tr>
<tr>
<td>LDRA (°)</td>
<td>83.8 ± 3.0</td>
<td>85.4 ± 2.3</td>
<td>89.5 ± 2.1</td>
<td>86.0 ± 2.2</td>
<td>86.9 ± 2.2</td>
<td>87.9 ± 2.0</td>
</tr>
<tr>
<td>PCRA (°)</td>
<td>85.2 ± 2.2</td>
<td>84.5 ± 2.0</td>
<td>87.4 ± 2.2</td>
<td>89.4 ± 1.5</td>
<td>90.1 ± 1.8</td>
<td>89.0 ± 2.3</td>
</tr>
<tr>
<td>DCRA (°)</td>
<td>78.7 ± 3.1</td>
<td>75.9 ± 2.8</td>
<td>78.4 ± 2.5</td>
<td>81.1 ± 2.8</td>
<td>78.8 ± 2.7</td>
<td>76.5 ± 2.7</td>
</tr>
<tr>
<td>RPA (°)</td>
<td>168.3 ± 0.4</td>
<td>168.4 ± 0.5</td>
<td>168.3 ± 0.3</td>
<td>168.3 ± 0.4</td>
<td>168.4 ± 0.5</td>
<td>168.2 ± 0.4</td>
</tr>
</tbody>
</table>

Values are shown as mean ± SD. RU = radioulnar; MPRA = medial proximal radial angle; LDRA = lateral distal radial angle; PCRA = proximal cranial radial angle; DCRA = distal caudal radial angle; RPA = radial procurvatum angle.

Results
Secondary ossification centres
The olecranal apophysis was not yet ossified in nine dogs, but it was visible as an ill-defined area of ossification in five dogs at six or seven weeks of age. It was detectable in all dogs at eight or nine weeks of age. The structure was well-delineated with rounded edges at 10 or 11 weeks of age in all dogs. The olecranal apophysis attained its proper anatomical shape at 14 or 15 weeks of age. With regard to ossification of the medial humeral epicondyle, the secondary ossification centres were either ill-defined areas of ossification (six dogs) or round (eight dogs) at six or seven weeks of age. In all dogs, the medial humeral epicondyle attained its rounded edges by 10 or 11 weeks of age and acquired its proper anatomical shape in the subsequent weeks.

At six or seven weeks of age, the appearance of the ulnar styloid process was either an irregular area of ossification (eight dogs) or a rectangle with the width larger than the height (six dogs). Thereafter, the ulnar styloid process ossified gradually into a cone shape with irregular ossification at its apex by 14 or 15 weeks of age. The apex of the ulnar styloid process was well-defined and delineated at 16 or 17 weeks of age (Figure 3). The earliest age at which a small area of irregular ossification in the region of the anconeal process could be detected was 11 weeks, and this area of ossification was connected with the rest of the ulna (Figure 4b). None of the dogs had evidence of a separate ossification centre in the anconeal process, and by 15 or 16 weeks of age, all anconeal processes had attained their proper anatomic shape (Figure 4c). Statistically, the ossification of secondary ossification centre did not differ significantly between medial coronoid disease positive and medial coronoid disease negative status (p = 0.66–0.82).

Radioulnar length ratio
The mean (± SD) radioulnar length ratio for the canine antebrachia is shown in Table 2, and differences were considered statistically significant at p <0.05.

Table 2 Measurements used to investigate the development of the antebrachia and elbow joints of dogs with a different medial coronoid process status.

<table>
<thead>
<tr>
<th>MCD coronoid process status</th>
<th>Medial coronoid disease negative</th>
<th>Medial coronoid disease positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU (ratio)</td>
<td>0.786 ± 0.01</td>
<td>0.783 ± 0.01</td>
</tr>
<tr>
<td>Centre of rotation of angulation methodology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPRA (°)</td>
<td>91.2 ± 2.2</td>
<td>92.3 ± 2.5</td>
</tr>
<tr>
<td>LDRA (°)</td>
<td>87.5 ± 2.3</td>
<td>87.3 ± 2.4</td>
</tr>
<tr>
<td>PCRA (°)</td>
<td>88.6 ± 2.0</td>
<td>85.7 ± 2.0</td>
</tr>
<tr>
<td>DCRA (°)</td>
<td>77.7 ± 2.9</td>
<td>78.2 ± 2.7</td>
</tr>
<tr>
<td>RPA (°)</td>
<td>168.3 ± 0.4</td>
<td>168.4 ± 0.4</td>
</tr>
</tbody>
</table>

Values are shown as mean ± SD. MCD = medial coronoid disease; RU = radio-ulnar; MPRA = medial proximal radial angle; LDRA = lateral distal radial angle; PCRA = proximal cranial radial angle; DCRA = distal caudal radial angle; RPA = radial procurvatum angle.
Curvatum angle were not significantly different in medial coronoid disease positive and medial coronoid disease negative dogs (p = 0.17–0.67) (Table 2).

Joint congruence evaluation

In the neutral position, radioulnar and humeroulnar incongruency were not detected from 12 or 13 weeks until 15 weeks in the two dogs that were euthanatized at that age, and until 16 or 17 weeks of age in the remaining dogs. No step defect was observed on CT images. The mean ± SD distance between the most proximal ulnar surface and the most proximomedial aspect of the radial head is given in Table 1 and Table 2. The distance was not affected significantly by age (p = 0.22–0.67) or medial coronoid process negative dogs (p = 0.17–0.67) (Table 2).

Discussion

There were no significant differences found in the development of the antebrachia and curvatum angle were not significantly different in medial coronoid disease positive and medial coronoid disease negative dogs (p = 0.17–0.67) (Table 2).

Centre of rotation of angulation methodology

The medial proximal radial angle, lateral distal radial angle, proximal cranial radial angle, distal caudal radial angle, and radial curvatum angle are shown in Table 1 and Table 2, by age and medial coronoid process status. Medial proximal radial angle and lateral distal radial angle increased with age (p ≤ 0.001), whereas proximal cranial radial angle (p = 0.14), distal caudal radial angle (p = 0.28) and radial curvatum angle (p = 0.58) did not (Table 1). Medical proximal radial angle, lateral distal radial angle, proximal cranial radial angle, distal caudal radial angle, and radial curvatum angle were not significantly different in medial coronoid disease positive and medial coronoid disease negative dogs (p = 0.17–0.67) (Table 2).
elbow joints of dogs that were positive or negative for medial coronoid disease between the ages of six to 17 weeks for the parameters examined (ossification of secondary ossification centres, radioulnar length ratio, medial proximal radial angle, lateral distal radial angle, proximal cranial radial angle, distal caudal radial angle, radial pro-curvature angle, and joint congruence evaluation). It is crucial to investigate the development of the elbow joints at a very young age since medial coronoid disease can occur as early as 14 weeks of age, even though some investigators consider that radiographic findings regarding the structural anatomy of the bones are not accurate before 16 weeks of age due to incomplete ossification (11, 12, 17, 19). Our previous studies proved that CT was more sensitive (30.8%) than radiography (0%) in detecting early medial coronoid disease, with the earliest signs detectable at 14 weeks of age (11, 12).

Although there was some variation in the development of the secondary ossification centres among the 14 pairs of elbow joints studied, the proper anatomical shape was attained in all elbows by 16 or 17 weeks of age. Secondary ossification centres of the olecranal apophysis, medial humeral epicondyle, and ulnar styloid process were not fully fused with the diaphysis at the age of 16 or 17 weeks. The ossification of the anconeal process in Labrador Retrievers differs from that in some other breeds (16, 20, 24). Unlike Great Danes, for instance Labrador Retrievers do not have a clearly distinguishable, separate secondary ossification centre in the anconeal process. Ossification started from the base and was completed within two weeks.

Although none of the measurements obtained using CORA were significantly different between medial coronoid disease positive and medial coronoid disease negative dogs, we have provided breed specific joint reference angles from images of growing Labrador Retrievers. This might be useful in the planning of deformity correction in future cases. These joint reference angles can be used as well in the identification of the location and magnitude of a deformity case.

Radioulnar and humeroulnar joint congruence evaluation were not different in dogs with and without medial coronoid disease. We evaluated the joint congruence from the age of 12–13 weeks onward because the large joint space before the age of 12 weeks made measurements inaccurate. Bones had almost achieved their proper anatomic shape by 12 weeks even though they were still undergoing remodelling. We conclude that joint incongruity does not play a role in the development of medial coronoid disease in Labrador Retrievers in our study. This was further supported by the later necropsy examination where no evidence of radioulnar and humeroulnar incongruency was found in medial coronoid disease-positive limbs (11, 12).

All measurements should be interpreted with caution because the cartilage layers are not visible on radiographic and CT images. Although a CT image is used as a gold standard to detect radioulnar incongruency, mild radioulnar incongruency may be missed on CT due to partial volume effects (25). Furthermore, we cannot rule out the dynamic radioulnar longitudinal incongruency as proposed by using static radiography (26).

We monitored the growth of Labrador Retrievers during a period of rapid growth, and without the evidence of signs of secondary degenerative joint changes, such as subtrochlear sclerosis and periarticular osteophytosis. Therefore we are confident that these medial coronoid disease positive elbows do represent the incipient medial coronoid disease. Absence of periarticular osteophytosis in all images enabled us to identify the bone edges and landmarks accurately.

Conclusions

On the basis of our findings, we conclude that the development of the medial coronoid disease in Labrador Retrievers in our study was not related to any disturbance in the development of the antebrachia and elbow joints during the rapid growth phase. Further breed specific studies would be necessary to determine whether such disturbances play a role in the aetio-pathogenesis of medial coronoid disease in other breeds.

Conflict of interest

None declared.

References